Configurations of limit cycles in Liénard equations
نویسندگان
چکیده
منابع مشابه
Maximum amplitude of limit cycles in Liénard systems.
We establish sufficient criteria for the existence of a limit cycle in the Liénard system x[over ̇]=y-ɛF(x),y[over ̇]=-x, where F(x) is odd. In their simplest form the criteria lead to the result that, for all finite nonzero ɛ, the amplitude of the limit cycle is less than ρ and 0≤a≤ρ≤u, where F(a)=0 and ∫(0)(u)F(x)dx=0. We take the van der Pol oscillator as a specific example and establish that ...
متن کامل2 The Limit Cycles of Liénard Equations in the Strongly Nonlinear Regime
Liénard systems of the form ẍ+ ǫf(x)ẋ+x = 0, with f(x) an even function, are studied in the strongly nonlinear regime (ǫ → ∞). A method for obtaining the number, amplitude and loci of the limit cycles of these equations is derived. The accuracy of this method is checked in several examples. Lins-Melo-Pugh conjecture for the polynomial case is true in this regime.
متن کاملBifurcation Curves of Limit cycles in some LiéNard Systems
Liénard systems of the form ẍ + ǫf(x)ẋ + x = 0, with f(x) an even continous function, are considered. The bifurcation curves of limit cycles are calculated exactly in the weak (ǫ → 0) and in the strongly (ǫ → ∞) nonlinear regime in some examples. The number of limit cycles does not increase when ǫ increases from zero to infinity in all the cases analyzed.
متن کاملLimit Cycles in Two Types of Symmetric LiÉnard Systems
Liénard systems and their generalized forms are classical and important models of nonlinear oscillators, and have been widely studied by mathematicians and scientists. The main problem considered is the maximal number of limit cycles that the system can have. In this paper, two types of symmetric polynomial Liénard systems are investigated and the maximal number of limit cycles bifurcating from...
متن کاملLimit cycles of differential equations
with P and Q polynomial and relatively prime, then the situation is substantially simpler, at least with respect to the richness of the asymptotic behaviour of the orbits. The Poincaré-Bendixson theorem implies that a bounded ω-limit set (and hence also a bounded α-limit set) of an orbit has to be either a singularity (also called a zero, an equilibrium, a critical point, or a stationary point)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2013
ISSN: 0022-0396
DOI: 10.1016/j.jde.2013.08.004